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Overview

1. K-Nearest Neighbours

2. Naive Bayes

3. SVMs

4. Decision Trees

5. Ensembles - Random Forests

6.  Ensembles - Boosting




k-Nearest Neighbours

Given an n-dimensional space, map
any point p to the class based on its
nearest neighbours from the training

set

https://upload.wikimedia.org/wikipedia/commons/6/64/LevittownPA.jpg




Procedure

15-NN 1-NN
(Voronoi
tesselation)
Hastie, p. 15-16



Training

No training per se, since modeling the decision boundary
could be quite complex

Instead, find the labels of the % closest (e.g., Euclidean
distance) training vectors

2
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Analysis of microarray leukemia data using an efficient
MapReduce-based K-nearest-neighbor classifier

@ CrossMark

Mukesh Kumar *, Nitish Kumar Rath, Santanu Kumar Rath

Department of Computer Science and Engineering, NIT Rourkela, Orissa 769008, India

Objective: classify different groups of leukemia subjects based
on shared patterns of gene expression

Note: this paper spends a *lot* of time on MapReduce aspects of

feature selection and k-NN classification — we’re not going to
discuss that part

Kumar et al. (2016)
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Datasets

Table 2
Microarray dataset used.

Dataset Number of Number of Number of Size
samples features classes

GSE13159 (28] | 2096 54,675 18 1.93 GB
GSE13204 [29] 3248 1480 18 1.96 GB
GSE15061 [31] 870 54,675 3 650 MB

Table 3

Details of partitioning into training and testing datasets. (S NCBI Bttt
L i GEO Publications |_FAQ | MIAME | Email GEO

Dataset #Samples #Features #Training samples #Testing SAME | \cer- ceo > Accession Display @ Not logged in | Login @
GSE] 5061 870 54 675 580 290 GEO help: Mouse over screen elements for information.
GSE13159 2096 54’675 1397 699 Scope: [seff <] Format: [HTML -~ Amount: [Quick | GEO accession: [GSE13159 |
GSE13204 3248 ]480 2165 ‘1083 Series GSE13159 Query DataSets for GSE13159

Status Public on Sep 30, 2009

Title Microarray Innovations in LEukemia (MILE) study: Stage 1 data

Organism Homo sapiens

— Experiment type  Expression profiling by array
Summary An International Multi-Center Study to Define the Clinical Utility of Microarray—

Based Gene Expression Profiling in the Diagnosis and Sub-classification of
Leukemia (MILE Study)

Established in 2005, the MILE (Microarray Innovations in LEukemia) study
research program included 11 participating centers in three continents. This
cohort of n=2,096 samples represents data on the retrospective whole-
genome analysis phase.

This dataset is part of the MILE Study (Microarray Innovations In LEukemia)
program, headed by the European Leukemia Network (ELN) and sponsored by
Roche Molecular Systems, Inc.

Overall design 2096 blood or bone marrow samples of acute and chronic leukemia patients
were hybridized to Affymetrix HG-U133 Plus 2.0 GeneChips.

Citation(s) Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR et al. An international
standardization programme towards the application of gene expression
profiling in routine leukaemia diagnostics: the Microarray Innovations in
LEukemia study prephase. Br J Haematol 2008 Sep;142(5):802-7.
PMID: 18573112
Haferlach T, Kohlmann A, Wieczorek L, Basso G et al. Clinical utility of
microarray-based gene expression profiling in the diagnosis and
subclassification of leukemia: report from the International Microarray
Innovations in Leukemia Study Group. J Clin Oncol 2010 May
20;28(15):2529-37. PMID: 20406941

Submission date  Oct 10, 2008
Last update date  Mar 25, 2019

Contact name Wei-Min Liu
Eooiiroy linGeach




An 1mpressive number of
classes

GSE15061 classes Class label #Samples
Disease state: AML 1 135
Disease state: MDS 2 109
Disease state: none-of-the-targets 3 46
GSE13159 classes Class label  #Samples
ALL with hyperdiploid karyotype 1 14
ALL with t(12;21) 2 19
ALL with t(1;19) 3 12
AML complex aberrant karyotype 4 16
AML with inv(16)/t(16;16) 5 9
AML with normal karyotype + other abnormalities 6 117
AML with t(11q23)/MLL 74 13
AML with t(15;17) 8 12
AML with t(8;21) 9 14
CLL 10 149
CML 11 25
MDS 12 69
Non-leukemia and healthy bone marrow 13 25
Pro-B-ALL with t(11q23)/MLL 14 23
T-ALL 15 58
c-ALL/Pre-B-ALL with t(9;22) 16 41
c-ALL/Pre-B-ALL without t(9;22) 17 79

mature B-ALL with t(8;14) 18 4




Feature selection

- We probably don’t want to use over 54,000 features.

- The authors used basic statistical approaches such as
ANOVA to determine which features best differentiated
different classes.

- p-value filter for inclusion

- Feature selection results were...weird

Dataset ANOVA Kruskal-Wallis Friedman
GSE15061 (54,675) 6786 9741 54318
GSE13159 (54,675) 37,016 36,897 17,593

GSE13204 (1480) 1423 1427 1225




K-NN operation

- For each test data point, identify the K closest points from
the training set (i.e., most similar profiles according to
Euclidean distance)

- What are the labels of these K points?

- Choose the modal class, 1.e., the class that 1s most
frequently represented in the neighbour set

- Accuracy = % of all samples that were correctly classified




Output Class

Results

Confusion Matrix Confusion Matrix

Confusion Matrix

3 3
Target Class Target Class Target Class
(a) ANOVA (b) Kruskal-Wallis (c) Friedman
(f=6,786,K=21) (f=9,741,K=17) (f=54,318, K=21)

Accuracy 1s similar across all three feature sets
K 1s reasonably consistent




Modifications to basic k-NN

Try different distance definitions

Treat different dimensions differently
(e.g., normalize, kernel methods)




Naive Bayes
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The point

- Assign samples to different classes using a probabilistic
approach

e Think of it as competitive matching based on distributions of
features

- Features are treated independently
e A simplifying assumption that makes NB very fast

- Classes are assigned probabilities which can be modified
by priors




Naive Bayes

For a set of n classes C, C,, C,, ..., C,

n

and a problem instance x

(usually represented with a feature vector),

Likelihood of x
.— given model C,

—— ———
~ ’— =<

(C|x (C ) p(x | C, )
....... (\P(x)“)_"

Prior probability of class i \

Probability of /

membership in class i

\ Probability of x
(generally 1gnored)

Predicted class: C. that maximizes p(C, | x)




Priors

What are the expected probabilities of different
classes?

Flat prior: p(C) =p(Cy) =p(C)=1/n

Informative prior: p(C) # p(C) for some i # j

(based on what?)




Calculating likelihoods

“The probability of the data, given the model”
What 1s the likelihood of x, given class C.?

Product over all features in x

p(x]C)=
|

Likelihood of x, given C, Likelihood of X, given C,

)




Calculating likelihoods:
the independence
assumption

The calculation can be very complicated if x has
many elements and we consider all possible
dependencies among elements

(as most classifiers do)

The solution 1s to treat each element of x
independently




NB example

Fragment Classification Package (FCP): Assigning DNA sequence
fragments to originating organisms from a metagenomic sample

. Microbial community

____________

N
* Extract DNA
N

Map DNA sequences Sequence DNA
to source organisms . — __fragments

Parks DH, MacDonald NJ, and Beiko, RG (2011) BMC Bioinformatics



How do we classify these
sequences?’

k-mer decomposition: Build compositional models for
each genome 1n a reference database

C. X

l

{AA=0.05,AC=0.03,AG =0.08, AT = 0.04, CA=...
{AA=0.05,AC=0.04,AG=0.10, AT = 0.02, CA= ...
{AA=0.01,AC=0.05,AG =0.08, AT = 0.02, CA= ...
@ {AA=0.03,AC=0.03,AG=0.09, AT = 0.01, CA=...




How do we classify these
sequences?’

k-mer decomposition: Build compositional models for
each genome 1n a reference database

p(x1C) =] ] p(x, 1C)

For all k-mers in fragment x...

Equal to the frequency of the k-mer j in model (= genome) C,

The “winning” genome is the one that maximizes the likelihood
(assuming a flat prior)




Trials

Simulated data

Avg. sensitivity
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Challenges in sequence
classification

(1) k-mer frequencies are averages calculated over the
entire genome: individual genes can and do vary

Worst offenders: recent acquisitions from other genomes
(e.g. plasmids!), viral genes, rapidly evolving genes

(2) We are restricted to the genomes in our training
set; new genomes are not modeled

“rank-flexible” classification: classify at a reasonable
taxonomic level

(3) Sparse representations when k 1s large

Spoiler: it doesn’t seem to matter all that much (we
checked!)

Parks DH, MacDonald NJ, and Beiko, RG (2011) BMC Bioinformatics



Example: classifying glacier metagenomes

Rank flexible

Figure 5. RITA classifications of the glacier metagenome of (26). (A) Rank-flexible classifications in Groups 1-3 to ranks between species and
phylum. The inner ring identifies the rank at which different fragments were classified, while the outer ring shows the distribution across different
labels at that rank, colored by the phylum to which the taxon belongs. Phylum colors: blue = Acidobacteria, green = Bacteroidetes.
red = Proteobacteria, orange = Actinobacteria, black = other. Alternating shades of the same color are used to distinguish different taxa at the
same rank from the same phylum. The taxonomic lineage of Polaromonas is identified with asterisks. (B) Rank-specific classifications at the phylum
(outer ring) and genus (inner ring) levels, with color scheme as in panel A. Deepest red and green represent aggregated ‘other’ genera of
Proteobacteria and Bacteroidetes

MacDonald NJ, Parks DH, Beiko RG (2012) Rapid identification of high-confidence taxonomic
assignments for metagenomic data. Nucleic Acids Res.




What about the independence
assumption?

AGGGCCTAGCATT gets decomposed into
AGGG, GGGC, GGCC, GCC(T, ...
Which will be highly correlated!

Whatever.
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The bias-variance tradeoff

High Bias Low Bias
Low Variance High Variance
ey e ol R T S o S S SR (R NS (O i <oy o -c e g S -
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/ ptimal
tradeoff High-dimensional
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%* % x*

Low Higl

Model Complexity

Hastie, p.38



A linearly separable problem

Yet another line!

\
Each point is a VECTOR in \\ O ’ .

some n-dimensional space AN

N\

@

VR
O 3

\ \ N
O y N
O @ 0.0

Here’s a line




The CONVEX HULLS determine
how the data can be separated




The CONVEX HULLS can define
a maximum margin line (plane, hyperplane)

The maximum margin hyperplane separating two groups provides the
optimal tradeoff between training set accuracy and function complexity




The SUPPORT VECTORS are the only points
needed to define the decision boundary

The support vector machine aims to find the maximum margin
hyperplane and its corresponding support vectors




Optimizing an SVM: quadratic programming

Maximize the margin, given the constraints that each
class instance must lie on the “correct” side of the
margin

This leads to a weighting of vectors — most vector
welghts will be zero (1.e., not support vectors)




Nll'l'}All ‘PROBLEMS
% . ARE

o

 LINEARLY. SEPARABLE

imgflip.com g
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Maximum Margin with Errors

If a training set is not linearly
separable given a function class of
some complexity, we can introduce a

bounded error term to tolerate
misclassification. SOFT MARGINS

What is the appropriate value for
the bound?

We can use cross-validation to
find out




Getting the most
from your linear classifier

- The SVM algorithm is based solely on dot products of
vectors

Standard formulation:

n
<x1>x2> = le,- "o,
=]

Kernel trick: Substitute any positive semi-definite function
K(x,x,) for the dot product

Positive semi-definite matrix: all eigenvalues > 0




Generic Kernels

Polynomaial:
_ d
k(x,x;)=(x;-x;+1)

Needs to be optimized!
Radial Basis: /

k(x;,x;)= exp(—y X, —xj||2)

Sigmoid:
k(x;,x;)=tanh(kx; -x, +¢)




The classifier only ‘sees’ the resulting combinations of
input features, and 1is still trying to optimize a linear
solution

Generic kernels are neat, but the use of custom kernels
allows you to use domain-specific knowledge to build
the classifier
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http://www.bact.wisc.edu/Microtextbook/
copyright Timothy Paustian© 1999-2006




Challenge

Predict targeting of proteins
based on their primary structure
(= amino acid sequence)




Sequence Kernels

The dot product 1s a way to capture the
similarity between sequence vectors

Lots of ways to build kernel functions!




Substitution kernel

BLOSUMG62 matrix for scoring residue similarity
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Local alignment (LLA) kernel

K(S1,S2) = Alignment score of S1 with S2

NOQILAL
E-IGAL

Alignment score: Add matches, subtract gap penalties
(details to come later)

S(N,E) — g + s(LI) + s(L,,G) + s(AA) + s(L,L)




Interesting questions

- Can SVMs trained using different kernels be combined to
yield more accurate predictions?

- Are there proteins that are particularly hard to classify?

- What information can be used to improve the kernel?




SVM variants

- Support vector regression
- Multi-class training

- Variations on error weighting
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Decision trees

- Classify two or more groups by creating decision nodes
based on specific criteria

Yes No

Polar bear Bls bea




Training

Decision Node (cases ¢ consisting of variables x. ):

If (stopping criterion not reached)

1. Find variable X, and threshold ¢ such that
optimal separation 1s achieved between cases
with different labels

Decision Node (c_<t)
3. Decision Node (c_ > t)

N




Optimal separation

Minimize node ‘impurity’

200 promoters/200 genes

TATA
present

150 promoters/50 genes

TATA
bsent

50 promoters/150 genes

Misclassification error: % of cases not belonging to majority class

Gini index: Y (Pr(c))x(1-Pr(c))

Cross-entropy: — Z (Pr(c)) x log Pr(c)




A greedy approach is most common

Is this guaranteed to find the best solution?

x Of course

not!!!




Stopping criteria
- There 1s no need to subdivide a pure class

- Other criteria (such as minimum number of classes at a
node) might be used as well

- We can use pruning strategies to roll back a tree and
achieve an optimal balance between size and separation
(bias vs. variance)
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Weakest link pruning:

Find the subtree T, that
minimizes a cost function
that balances accuracy and
complexity




Rifampin sensitivity of
bacterial RNA polymerase

- Rifampin interferes with transcription in Mycobacterium
tuberculosis

- However, mutations can arise in certain parts of the rpoB
gene that lead to rifampin resistance

- Can we classify rpoB variants based on the amino acids
encoded by the gene?

Cummings et al. BMC Bioinformatics 2004 5:137



103 resistant
70 susceptible

Position 531

51 resistant 52 resistant
70 susceptible 0 susceptible

Position 526 D,G,L.N,P,QR)Y

20 resistant 31 resistant
70 susceptible 0 susceptible

88.4% correctly classified (10-fold cross-validation)
Many nearby polymorphic sites (e.g. 511, 512, 515, 521 and
529) rejected as potentially good classifiers


http://www.biomedcentral.com/1471-2105/5/137/figure/F2?highres=y

That’s great, but...

- Decision trees are very susceptible to overfitting during
training

- Decisions are based on the training set and “nearly
neutral” splitting decisions cannot be revisited




Random forests:

why use only one tree when you can use many?

Instance

/.
b &b &

Tree-n

Class-A Class-B Class-B

l ,‘ I
l Majority-Voting |

'Final-Class |

These trees must not all make the exact same predictions!

By Venkata Jagannath - https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=68995764




RF's part 1: trees, trees, trees!

- Each tree 1s trained on a randomly regenerated sample of
the dataset, with replacement

Training Dataset: {T , T,, T,, T,, ..., T }

Bootstrapped dataset 1: {T1’ T, T3’ T, ... Tn}
Bootstrapped dataset 2: {T,, T, T,, T, ..., T }
Bootstrapped dataset 3: {T,, T,, T, T,, ..., T }

Each time we overrepresent some cases, and eliminate
others = boostrap aggregation (bagging)




RF's part 2: playing with
features

- At each node in each tree, select only a random subset of
features to draw from for decision making

. 777

- The big idea: if you use the same features every time,
you’ll get the same tree many times. Random subset
selection addresses this.




RF's: the point

- Individual trees can overfit, but taking many trees
(averaging or voting) can smooth out the consequences of
overfitting

- RF's can be very accurate, even if many of the individual
trees aren’t very good!




More than 1 way to ensemble

Bagging Boosting
/ g . .\ : -
(e = y—» N Classifier-1
Pl ' ) ° ° /
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https://www.pluralsight.com/guides/ensemble-methods:-bagging-versus-boosting




Summary

Start simple and carefully tune to establish baselines
Exploit your knowledge of the data with SVM kernels

Make use of ensemble techniques to get effective
models with relatively little work!






